{VERSION 2 3 "IBM INTEL NT" "2.3" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Helvetica" 1 10 0 0 255 1 0 0 0 0 1 0 0 0 0 }{CSTYLE "" -1 256 "" 1 14 8 2 124 0 0 0 1 0 0 0 0 0 0 } {CSTYLE "" -1 257 "" 0 1 0 0 196 0 0 0 1 0 0 0 0 0 0 }{CSTYLE "" -1 258 "" 1 12 214 63 112 0 0 0 1 0 0 0 0 0 0 }{CSTYLE "" -1 259 "" 1 12 7 1 180 0 0 0 1 0 0 0 0 0 0 }{CSTYLE "" -1 260 "" 0 1 230 0 175 0 0 0 1 0 0 0 0 0 0 }{CSTYLE "" -1 261 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 } {CSTYLE "" -1 262 "" 0 1 74 0 120 0 0 0 1 0 0 0 0 0 0 }{CSTYLE "" -1 263 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 }{CSTYLE "" -1 264 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 }{CSTYLE "" -1 265 "" 0 1 145 219 128 0 0 0 1 0 0 0 0 0 0 }{CSTYLE "" -1 266 "" 0 1 51 100 40 0 0 0 1 0 0 0 0 0 0 } {CSTYLE "" -1 267 "" 0 1 51 51 51 0 0 0 1 0 0 0 0 0 0 }{CSTYLE "" -1 268 "" 1 12 222 63 0 0 0 0 1 0 0 0 0 0 0 }{CSTYLE "" -1 269 "" 1 12 180 0 88 0 0 0 1 0 0 0 0 0 0 }{CSTYLE "" -1 270 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 }{CSTYLE "" -1 271 "" 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Helvetica" 1 10 0 0 0 1 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 3 0 3 0 0 0 -1 0 }{PSTYLE "Maple Output " 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 "" 0 1 130 254 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 257 1 {CSTYLE "" -1 -1 "" 0 1 0 0 40 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 258 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 } {PSTYLE "" 0 259 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 } 3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 260 1 {CSTYLE "" -1 -1 " " 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 256 "" 0 "" {TEXT 256 20 "ATTRACTEURS ETRANGES" } }{PARA 11 "" 1 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "with(plots): with(plottools):" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 257 "" 0 "" {TEXT 259 21 "L'attracteur de H\351n on" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 257 13 "Visualisation" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 473 "h \351non:=proc(x0,y0,n,a,b) # n repr\351sente le nombre de points de l' orbite de point initial [x0;y0]; a et b sont des param\350tres \nlocal point,s,i,f,g;\nf:=unapply(y+1-a*x^2,x,y); g:=unapply(b*x,x,y); # fon ctions coordonn\351es de la fonction d'it\351ration\npoint:=[x0,y0]; s :=NULL; # initialisations\nfor i to n do s:=s,point; point:=[f(point[1 ],point[2]),g(point[1],point[2])] od; # construction de la s\351quence des points de l'orbite\nplot([s],style=POINT,symbol=POINT, color=RED) \nend:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "h\351non(0,0,2000 ,1.4,0.3);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 260 27 "Etude d'une zone de capture" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 122 "display(polygonplot([[-1.33,0.42],[1.32,0.133],[1. 245,-0.14],[-1.06,-0.5]],style=LINE,color=RED),h\351non(0,0,1000,1.4,0 .3));" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "h\351non(1.292,0,2 0,1.4,0.3);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1104 "bassin_h \351non:=proc(point) local phi,psi,x,y,i,z,appartenance,r\351ponse;\np hi:=(x,y)->y+1-1.4*x^2; psi:=x->.3*x;\nx:=op(1,point); y:=op(2,point); r\351ponse:=false; # initialisations\nappartenance:=(x,y)->(x+1.33)*( 0.133-0.42)-(y-.42)*(1.32+1.33)>=0 and (x-1.32)*(-.14-.133)-(y-.133)*( 1.245-1.32)>=0 and (x-1.245)*(-.5+.14)*(y+.14)*(-1.06-1.245)<=0 and (x +1.06)*(0.42+0.5)-(y+0.5)*(-1.33+1.06)>=0;\n# le point est-il dans la \+ zone de capture?\nfor i to 200 do \nif traperror(appartenance(x,y))=la sterror then r\351ponse:=false; break\nelse if appartenance(x,y)=true \+ then r\351ponse:=true; break\n else z:=x; x:=traperror(phi(x,y)); if x=lasterror then r\351ponse:=false; break\n \+ else y:=traperror(psi(z)); if y=laste rror then r\351ponse:=false; break\n \+ fi\n \+ fi\n fi\nfi\nod;\n# \+ tous ces traperror sont destin\351s \340 \351viter un message d'erreur pour d\351passement dans la valeur absolue des donn\351es calcul\351e s\nr\351ponse # bool\351en final\nend:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "bassin_h\351non([1.292,0]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "bassin_h\351non([1.291,0]);;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "bassin_h\351non([-2,2]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "bassin_h\351non([-2,4]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "bassin_h\351non([-2,6]);" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "bassin_h\351non([1.2,0.1]); " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "bassin_h\351non([1.2,0. 7]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "bassin_h\351non([1. 2,1]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "bassin_h\351non([ 1.2,1.3]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "bassin_h\351n on([1.2,2]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "bassin_h \351non([1.2,-.1]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "bass in_h\351non([1.2,-0.7]);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT 261 51 "Agrandissement de certaines parties de l 'attracteur" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 672 "zoom_h\351n on:=proc(xmin,xmax,ymin,ymax) # les arguments repr\351sentent les limi tes du trac\351\nlocal f,g,point,s,compteur;\nf:=unapply(y+1-1.4*x^2,x ,y); g:=unapply(.3*x,x,y); # fonctions coordonn\351es de la fonction d 'it\351ration\npoint:=[0,0]; s:=NULL; compteur:=0; # initialisations\n while compteur<=200 do point:=[f(point[1],point[2]),g(point[1],point[2 ])];\n if point[1]>=xmin and point[1]<= xmax and point[2]>=ymin and point[2]<=ymax\n \+ then s:=s,point; compteur:= compteur+1\n \+ fi\n od;\nplot([s],x=xmin..xmax ,y=ymin..ymax,style=POINT,symbol=POINT, color=RED)\nend:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "zoom_h\351non(0.9,1,0.1,0.15);" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "zoom_h\351non(0.94,0.96,0.13 ,0.14);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 262 48 "Etude de la sensibilit\351 aux conditions initiales" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 585 "sensibilit\351_h\351non:=pr oc(point1,point2,n) # n repr\351sente le nombre de points calcul\351s \nlocal point,punkt,punto,s,i,f,g;\nf:=unapply(y+1-1.4*x^2,x,y); g:=un apply(0.3*x,x,y); # fonctions coordonn\351es de la fonction d'it\351ra tion\npunkt:=point1; punto:=point2; point:=[point1[1],point2[1]]; s:=N ULL; # initialisations\nfor i to n do\n s:=s,point;\n \+ punkt:=[f(punkt[1],punkt[2]),g(punkt[1],punkt[2])];\n \+ punto:=[f(punto[1],punto[2]),g(punto[1],punto[2])];\n \+ point:=[punkt[1],punto[1]]\n od; \nplot([s],style=POINT,sy mbol=POINT, color=RED)\nend:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 54 "sensibilit\351_h\351non([-1,0.1],[-0.999999,0.100001],3000);" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "sensibilit\351_h\351non([0, 0],[0.00001,0.000001],3000);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 263 68 "Essai d'autres param\350tres, construc tion d'un diagramme de Feigenbaum" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "h\351non(0,0,1000,0.3,0.3);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "h\351non(0,0,1000,0.3,0.4);" }}}{EXCHG {PARA 0 " > " 0 "" {MPLTEXT 1 0 22 "h\351non(0,0,1000,1,0.3);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1219 "it\351rateur_h\351non:=proc(d\351but,fi n,pas)\nlocal a,s,f,g,point,i,k,u,v;\na:=d\351but; s:=\{\}; \nwhile a< =fin do\n f:=unapply(y+1-a*x^2,x,y); g:=unapply(0.3*x ,x,y);\n for i from 0 to 20\n \+ do\n point:=[1,-1+i/10]; # p ourvu que ce point soit dans un bassin d'attraction!\n \+ for k to 50 do u:=traperror(f(point[1],point[2]));\n \+ if u=lasterror then break\n \+ else v:=traperror(g(point[1], point[2]));\n if v =lasterror then break fi\n \+ fi;\n point:=[u,v] \n od\n \+ od;\n for k to 100 do point:=[f(point[1],point[2]), g(point[1],point[2])];\n s:=s u nion \{[a,evalf(point[1],4)]\} # 4 d\351cimales pour ne pas surcha rger la structure s\n od;\n \+ a:=a+pas\n od;\nplot([op(s)],'a'=d\351but..f in,style=POINT,symbol=POINT)\nend:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "it\351rateur_h\351non(0,1.42,0.01);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 264 83 "Confirmation d e la pr\351sence simultan\351e de deux attracteurs pour certains param \350tres" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1158 "h\351non1:=pr oc(x0,y0,n,a,b) # n repr\351sente le nombre de points de l'orbite de p oint initial [x0;y0]; a et b sont des param\350tres \nlocal point,s,i, f,g;\nf:=unapply(y+1-a*x^2,x,y); g:=unapply(b*x,x,y); # fonctions coor donn\351es de la fonction d'it\351ration\npoint:=[x0,y0]; s:=NULL; # i nitialisations\nfor i to 50 do point:=[f(point[1],point[2]),g(point[1] ,point[2])] od; # \351limination de premiers it\351r\351s\nfor i to n \+ do s:=s,point; point:=[f(point[1],point[2]),g(point[1],point[2])] od; \+ # construction de la s\351quence des points de l'orbite\nplot([s],styl e=POINT,symbol=POINT, color=RED)\nend:\n\nh\351non2:=proc(x0,y0,n,a,b) # n repr\351sente le nombre de points de l'orbite de point initial [x 0;y0]; a et b sont des param\350tres \nlocal point,s,i,f,g;\nf:=unappl y(y+1-a*x^2,x,y); g:=unapply(b*x,x,y); # fonctions coordonn\351es de l a fonction d'it\351ration\npoint:=[x0,y0]; s:=NULL; # initialisations \nfor i to 50 do point:=[f(point[1],point[2]),g(point[1],point[2])] od ; # \351limination de premiers it\351r\351s\nfor i to n do s:=s,point ; point:=[f(point[1],point[2]),g(point[1],point[2])] od; # constructio n de la s\351quence des points de l'orbite\nplot([s],style=POINT,symbo l=POINT, color=BLUE)\nend:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 74 "display(h\351non1(.5,0,1000,1.08,.3),h\351non2(-0.1111,-0.105555,1 000,1.08,.3));" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 258 " " 0 "" {TEXT 258 23 "L'attracteur de R\366ssler" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "with(DEtool s):" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 265 61 "Diverses visualisations de l'attracteur de R\366ssler pour c=5 .7" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 305 "# a)L'attracteur de \+ R\366ssler pour c=5.7, approximation par une solution du syst\350me di ff\351rentiel de R\366ssler\nDEplot3d(\{D(x)(t)=-(y(t)+z(t)),D(y)(t)=x (t)+0.2*y(t),D(z)(t)=0.2+x(t)*z(t)-5.7*z(t)\},[x(t),y(t),z(t)],t=0..10 0,[[x(0)=-1,y(0)=0,z(0)=0]],stepsize=0.05,axes=FRAME,linecolor=RED,ori entation=[-130,60]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 246 "# \+ b)La m\352me chose, mais entre t=100 et t=200\nDEplot3d(\{D(x)(t)=-(y( t)+z(t)),D(y)(t)=x(t)+0.2*y(t),D(z)(t)=0.2+x(t)*z(t)-5.7*z(t)\},[x(t), y(t),z(t)],t=100..200,[[x(0)=-1,y(0)=0,z(0)=0]],stepsize=0.05,axes=FRA ME,linecolor=RED,orientation=[-130,60]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 246 "# c)La m\352me chose, mais entre t=100 et t=300\nDEp lot3d(\{D(x)(t)=-(y(t)+z(t)),D(y)(t)=x(t)+0.2*y(t),D(z)(t)=0.2+x(t)*z( t)-5.7*z(t)\},[x(t),y(t),z(t)],t=100..300,[[x(0)=-1,y(0)=0,z(0)=0]],st epsize=0.05,axes=FRAME,linecolor=RED,orientation=[-130,60]);" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 306 "# d)Le m\352me attracteur, \+ la solution \351tant trac\351e point par point ; \nDEplot3d(\{D(x)(t)= -(y(t)+z(t)),D(y)(t)=x(t)+0.2*y(t),D(z)(t)=0.2+x(t)*z(t)-5.7*z(t)\},[x (t),y(t),z(t)],t=100..300,[[x(0)=-1,y(0)=0,z(0)=0]],stepsize=0.05,axes =FRAME,linecolor=RED,style=POINT,symbol=POINT,thickness=0,orientation= [-130,60]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 307 "# e)Encore \+ cet attracteur, la couleur de la courbe variant avec le param\350tre t pour cr\351er une animation\nDEplot3d(\{D(x)(t)=-(y(t)+z(t)),D(y)(t)= x(t)+0.2*y(t),D(z)(t)=0.2+x(t)*z(t)-5.7*z(t)\},[x(t),y(t),z(t)],t=100. .300,[[x(0)=-1,y(0)=0,z(0)=0]],stepsize=0.05,axes=FRAME,linecolor=t/30 0,orientation=[-130,60]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 282 "# f)Toujours l'attracteur de R\366ssler, les conditions initiales \351tant modifi\351es\nDEplot3d(\{D(x)(t)=-(y(t)+z(t)),D(y)(t)=x(t)+0 .2*y(t),D(z)(t)=0.2+x(t)*z(t)-5.7*z(t)\},[x(t),y(t),z(t)],t=100..300,[ [x(0)=0,y(0)=-8,z(0)=8]],stepsize=0.05,axes=FRAME,linecolor=t/300,orie ntation=[-130,60]);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 266 48 "Etude de la sensibilit\351 aux conditions init iales" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 740 "sensibilit\351_ro ssler:=proc(point1,point2,n)\n# point1 et point2 correspondent \340 de ux vecteurs initiaux, n au nombre de points [x1(t),x2(t)] construits\n local solution,s,i,solution1,solution2;\nsolution:=(x0,y0,z0)->dsolve( \{D(x)(t)=-(y(t)+z(t)),D(y)(t)=x(t)+0.2*y(t),D(z)(t)=0.2+x(t)*z(t)-5.7 *z(t),y(0)=y0,x(0)=x0,z(0)=z0\},\{x(t),y(t),z(t)\},type=numeric,method =rkf45,maxfun=60000,relerr=Float(1,4-Digits));\ns:=NULL; solution1:=so lution(op(point1)); solution2:=solution(op(point2));\nfor i from 100 t o n+100 do s:=s,[subs(solution1(i),x(t)),subs(solution2(i),x(t))] od; \n# (on commence \340 100 pour \351liminer les 100 premiers termes, qu i correspondront certainement \340 des valeurs encore tr\350s voisines )\nplot([s],style=POINT,symbol=CROSS, color=RED)\nend:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 56 "sensibilit\351_rossler([-1,0,0],[-1 .001,0.001,-0.001],500);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT 267 74 "L'attracteur de R\366ssler pour quelques valeurs bien choisies du param\350tre c" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 282 "# c=2.5 l'attracteur est une solution p\351riodiqu e, un seul minimum de l'abscisse\nDEplot3d(\{D(x)(t)=-(y(t)+z(t)),D(y) (t)=x(t)+0.2*y(t),D(z)(t)=0.2+x(t)*z(t)-2.5*z(t)\},[x(t),y(t),z(t)],t= 100..200,[[x(0)=-1,y(0)=0,z(0)=0]],stepsize=0.1,axes=FRAME,linecolor=R ED,orientation=[-130,60]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 319 "# c=4 l'attracteur est une solution p\351riodique, quatre minim a de l'abscisse, on est au-del\340 de la deuxi\350me bifurcation\nDEpl ot3d(\{D(x)(t)=-(y(t)+z(t)),D(y)(t)=x(t)+0.2*y(t),D(z)(t)=0.2+x(t)*z(t )-4*z(t)\},[x(t),y(t),z(t)],t=100..200,[[x(0)=-1,y(0)=0,z(0)=0]],steps ize=0.1,axes=FRAME,linecolor=RED,orientation=[-130,60]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 333 "# c=5.32 solution p\351riodique, trois minima de l'abscisse, fen\352tre de p\351riode 3 dans la deuxi \350me partie du diagramme de Feigenbaum\nDEplot3d(\{D(x)(t)=-(y(t)+z( t)),D(y)(t)=x(t)+0.2*y(t),D(z)(t)=0.2+x(t)*z(t)-5.32*z(t)\},[x(t),y(t) ,z(t)],t=100..200,[[x(0)=-1,y(0)=0,z(0)=0]],stepsize=0.1,axes=FRAME,li necolor=RED,orientation=[-130,60]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 253 "# c=7 attracteur chaotique \351trange, comme pour \+ c=5.7\nDEplot3d(\{D(x)(t)=-(y(t)+z(t)),D(y)(t)=x(t)+0.2*y(t),D(z)(t)=0 .2+x(t)*z(t)-7*z(t)\},[x(t),y(t),z(t)],t=100..200,[[x(0)=-1,y(0)=0,z(0 )=0]],stepsize=0.1,axes=FRAME,linecolor=RED,orientation=[-130,60]);" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 296 "# c=8 l'attracteur est \+ une solution p\351riodique, cinq minima de l'abscisse, fen\352tre de p \351riode 5\nDEplot3d(\{D(x)(t)=-(y(t)+z(t)),D(y)(t)=x(t)+0.2*y(t),D(z )(t)=0.2+x(t)*z(t)-8*z(t)\},[x(t),y(t),z(t)],t=100..200,[[x(0)=-1,y(0) =0,z(0)=0]],stepsize=0.1,axes=FRAME,linecolor=RED,orientation=[-130,60 ]);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 259 "" 0 "" {TEXT 268 22 "L'attracteur de Lorenz" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "with(DEtools):" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 266 "# vue globale de l'attracte ur de Lorenz pour R=28\nDEplot3d(\{D(x)(t)=10*(-x(t)+y(t)),D(y)(t)=28* x(t)-y(t)-x(t)*z(t),D(z)(t)=-8/3*z(t)+x(t)*y(t)\},[x(t),y(t),z(t)],t=1 80..220,[[x(0)=8.4,y(0)=8.4,z(0)=27]],stepsize=0.02,axes=FRAME,linecol or=ORANGE,orientation=[-50,65]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 316 "# vue sur un intervalle de temps plus court pour mie ux visualiser la dynamique du syst\350me\nDEplot3d(\{D(x)(t)=10*(-x(t) +y(t)),D(y)(t)=28*x(t)-y(t)-x(t)*z(t),D(z)(t)=-8/3*z(t)+x(t)*y(t)\},[x (t),y(t),z(t)],t=184.4..191.5,[[x(0)=8.4,y(0)=8.4,z(0)=27]],stepsize=0 .015,axes=FRAME,linecolor=0.16*t-29.5,orientation=[-50,65]);" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 270 "# une solution p\351riodiqu e attractive pour R=100.5\nDEplot3d(\{D(x)(t)=10*(-x(t)+y(t)),D(y)(t)= 100.5*x(t)-y(t)-x(t)*z(t),D(z)(t)=-8/3*z(t)+x(t)*y(t)\},[x(t),y(t),z(t )],t=100..120,[[x(0)=8.4,y(0)=8.4,z(0)=27]],stepsize=0.015,axes=FRAME, linecolor=ORANGE,orientation=[-50,65]);" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 260 "" 0 "" {TEXT 269 39 "Reconstruction des att racteurs \351tranges" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT 270 21 "Une premi\350re approche" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 404 "cr\351e_liste:=proc(fonction_d_it\351ration, traitement,z0) local z,s,j;\n# cr\351atrice d'une liste de donn\351es \+ obtenue artificiellement en appliquant un certain traitement (pour se \+ ramener \340 une seule variable) aux it\351r\351s par une certaine fon ction d'it\351ration \340 partir d'une donn\351e initiale z0.\nz:=(fon ction_d_it\351ration@@50)(z0); s:=NULL;\nfor j to 100 do s:=s,traiteme nt(z); z:=fonction_d_it\351ration(z) od;\n[s]\nend:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 250 "approche1:=proc(liste) local s,k;\n# construit le graphe des points [donn\351e num\351ro k;donn\351e num\351ro (k+1)] \+ \340 partir d'une liste de donn\351es \ns:=NULL;\nfor k from 1 to nops (liste)-1 do s:=s,[liste[k],liste[k+1]] od;\nplot([s],style=POINT,symb ol=POINT)\nend:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 50 "(approch e1@cr\351e_liste)(x->rand(),x->x/10^10,1996);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "(approche1@cr\351e_liste)(x->4*x*(1-x),x->x,0.1) ;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 93 "(approche1@cr\351e_lis te)(liste->[liste[2]+1-1.4*liste[1]^2,.3*liste[1]],liste->liste[1],[0, 0]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 281 "# essai de la prem i\350re approche pour reconstituer l'attracteur de R\366ssler\nwith(DE tools):\nf:=dsolve(\{D(x)(t)=-(y(t)+z(t)),D(y)(t)=x(t)+0.2*y(t),D(z)(t )=0.2+x(t)*z(t)-5.7*z(t),y(0)=0,x(0)=-1,z(0)=0\},\{x(t),y(t),z(t)\},ty pe=numeric):\n(approche1@cr\351e_liste)(t->t+1,T->subs(f(T),z(t)),0); " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 271 51 "Une deuxi\350me approche pour les attracteurs spatiaux" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "with(DEtools): with(plots): with(pl ottools):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 415 "# une reconst ruction de l'attracteur de R\366ssler par un la m\351thode des phases \nrossler:=dsolve(\{D(x)(t)=-(y(t)+z(t)),D(y)(t)=x(t)+0.2*y(t),D(z)(t) =0.2+x(t)*z(t)-5.7*z(t),y(0)=0,x(0)=-1,z(0)=0\},\{x(t),y(t),z(t)\},typ e=numeric,method=classical):\nl:=[seq(subs(rossler(20+0.05*k),z(t)),k= 0..2000)]:\ns:=NULL:\nfor n to nops(l)-20 do s:=s,[l[n],l[n+10],l[n+20 ]] od:\npointplot3d([s],style=LINE,color=BLACK,orientation=[50,60]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 424 "# une reconstruction de \+ l'attracteur de Lorenz par un la m\351thode des phases\nlorenz:=dsolve (\{D(x)(t)=10*(-x(t)+y(t)),D(y)(t)=28*x(t)-y(t)-x(t)*z(t),D(z)(t)=-8/3 *z(t)+x(t)*y(t),x(0)=8.4,y(0)=8.4,z(0)=27\},\{x(t),y(t),z(t)\},type=nu meric,method=classical):\nl:=[seq(subs(lorenz(20+0.01*k),x(t)),k=0..30 00)]:\ns:=NULL:\nfor n to nops(l)-10 do s:=s,[l[n],l[n+5],l[n+10]] od: \npointplot3d([s],style=LINE,color=BLACK,orientation=[70,70]);" }}}} {MARK "58 0 0" 14 }{VIEWOPTS 1 1 0 1 1 1803 }